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A bst r act

Some insights are given which were gained by one user through
experience with the use of the ADIFOR 2.0D software for automatic

di erentiation of Fortran code. These insights are generally in the

area of the user interface with the generated derivative code - particu-
larly the actual form of the interface and the use of derivative objects,

including "seed" matrices. Some remarks are given as to how to it-

erate application of ADIFOR in order to generate second derivative
code.

1 Background

Engineering systems are often studied using computer models. These mod-

els will typically contain parameters which can be used to represent design

decisions (e.g., the size of structural members, the gains in a control system)

and/or operating conditions (e.g., temperature, initial conditions, payload

mass). The computer model can be used to analyze the engineering system

by assigning values to the design and operating parameters and calculating

performance measures (such as measures related to the stability of dynam-

ical system) or simulating how the system will behave under the conditions

defined by the parameter values. The computer model can be further used

for design purposes by programming the computer to select suitable values

for the design parameters to achieve desired engineering properties such as

strength, performance, etc.

Mathematically, the computer model is a function. The independent

variables are the design and operating parameters. The dependent variables

are the various system quality metrics (which could be anything from an

eigenvalue to a complete response time history) which the computer model

computes from the input parameters.

A critically important tool in using the computer model for analysis and

design is the knowledge of the sensitivity of the system quality metrics to

variation in the design and operating parameters; i.e., the gradient of the

function. The sensitivities are, themselves, valuable information to know

about the system. A point design of a system might have good quality mea-

sures; but, if the system is highly sensitive to parameter variation, small

errors in those parameters might change the system into one of poor qual-

ity. The gradients also give useful information to some design tools such as

optimization techniques.



Onceonehasa computermodelof anengineeringsystem,therearevar-
ious optionsas to how to calculatethe gradient; for example,numerical
differentiation,analyticalderivationof the gradientformulaeand writing a
computerprogramto evaluatethem,or automaticdifferentiation.Numerical
differentiation(e.g.,dividedforwarddifferences)is inherentlyinaccurate.In-
accuraciescanbereducedto someextent,but only at substantialadditional
computationalexpense(suchas2 or 4 point symmetricdivided difference
formulae). Particularly for realisticcomputermodelsof complexengineer-
ing systems,derivationof analyticgradientsis unacceptablylabor intensive
and error prone. This makesautomaticdifferentiationby systemssuchas
ADIFOR, the subjectof this note, particularly attractive. The derivative
valuescalculatedarenumericallyexact,not approximate;the tediouswork
of analyticdifferentiationis doneby computer,not byerror-pronehandcal-
culations;andthe computationaltime requiredto calculategradientsin this
manneris comparableto the forward differencemethod of numericaldif-
ferentiation,which is the fastest,but leastaccurate,method of numerical
differentiation.

A groupof researchersin theGuidanceand ControlBranch(GCB)of the
NASA LangleyResearchCenter has for several years now been considering

the problem of applying neighboring optimal control techniques to guidance

problems (see, for example, [1, Chapter 6]). In this application, it is desired

not only to determine the control which results in an optimal trajectory, but

also to determine how to apply corrections to that control to take account

of perturbations in the operating parameters or drift away from the nominal

optimal trajectory and still have an approximately optimal trajectory. Im-

plicit function theory is applied to the gradient of an optimal Lagrangian of

a discrete approximation to the problem to represent the sensitivity of de-

sign variables to variation in operating parameters. If the Lagrangian of the

discretized optimal control problem is represented by/2 while the design vari-

ables (including the Lagrange multipliers) and the operating parameters are

represented, respectively, by v and w, then the optimal value v*(w) of v cor-

responding to a given value of w is found by solving the nonlinear necessary

condition equation E_.(v, w) - 0 for v (subscripts represent differentiation).

Solving this equation using a Newton-Raphson iteration requires not only

the gradient _., but the also Hessian _._.. Then calculating the sensitivity

of v* (w) to variation is w requires also the mixed second partial derivative

This research group has for over a year and a half been using ADIFOR to



find first andsecondderivativesof componentsof thecomputermodelwhich
arethenusedto buildup theLagrangiangradient,Hessian,andmixedsecond
partial derivative.Thisrepresentsthetimeframein whichthegrouphasbeen
testing their techniquesusingcomputermodelswhich are too complexto
allowthe practicaluseof hand-derivedfirst andsecondderivativeformulae.

The Lagrangiangradientis usedto find an initial approximationto the
nominaloptimal trajectory. The Lagrangiangradientand Hessianareused
to find the accuratelyconvergednominaloptimal trajectory neededasthe
starting point in the sensitivity calculation. The LagrangianHessianand
mixed secondpartial derivativeof the Lagrangianare beingusedin deter-
mining the correctionsto the controlswhichareneededto generatea linear
approximationto the neighboringoptimal trajectories.

ADIFOR hasprovedto beanenablingtechnologyin carryingthis study
forward. It wasduring the courseof the study just outlined that the user's
insightswhicharethe subjectof this noteweredeveloped.

2 Introduction

ADIPOR is an acronym for Automatic Differentiation of FORtran. "ADI-

FOR implements automatic differentiation by transforming a collection of

FORTRAN 77 subroutines that compute a function f into new FORTRAN

77 subroutines that compute the derivatives of the outputs of f with respect

to a specified set of inputs of f" [2, p. 3]. Reference [2] tells how to ob-

tain, install, and run ADIPOR. Reference [2] and other information about

ADIPOR can be found at the web site http ://www. cs. rice. edu/-adifor/.

It is assumed that the reader of this note is familiar with reference [2]. In

speaking of Fortran 77, an effort will be made to use the vocabulary of the

standards document ANSI X3.9-1978 [3].

One who reads the phrase "new FORTRAN 77 subroutines that compute

the derivatives of f" might suppose that the ADIPOR generated code re-

turns the partial derivatives of the scalar components of f with respect to

the scalar components of x. Actually, the ADIPOR generated code expects

the user to supply one or more sets of coefficients; and, for each set of coeffi-

cients supplied, the ADIPOR generated code returns the linear combination

of all the partial derivatives of the scalar components of f with respect to

the scalar components of x using this set of coefficients. By proper choice of

the coefficients, the individual partial derivatives can be recovered, but other



derivativerelatedinformationsuchasdirectionalderivativescanalsobere-
turned by the ADIFOR generatedcode.Oneof the purposesof the present
noteis to clarify the instructionsgivenin [2]asto howthe userchoosesand
passesthosesetsof coefficientsandhowto associateeachreturnedderivative
relateddatumwith thecorrectsetof coefficientsandthe correctcomponent
of f.

In otherwords,the purposeof this noteis to supplementthe information
givenin [2]onhowto makeuseof the "newFORTRAN77subroutinesthat
computethe derivatives."Specifically,the usermust write a driver routine
whichcallstheADIFORgeneratedsubroutinesthat computethederivatives.
Thisnoteprovidesinformationwhichtheuserneedsin orderto write adriver
routine. Clarificationisgivenin twoareasrelatedto communicationbetween
the user'sprogramandthe ADIFOR generatedderivativecode:

1. VariablesinADIFORgeneratedsubroutinecallingsequencesor in ADI-
FOR generatedcommonblockswhich werenot in the user'soriginal
code.

2. The useof "derivativeobjects".

Caveats: This note will deal exclusivelywith ADIFOR generationof
codeto calculatedenseJacobianmatrices(i.e.,ADIFORpreprocessoroption
AD__FLAVORhas its default valuedense, [2, Chapter9]). Anything in this
notewhichis specificto acomputeroperatingsystemwill referto the UNIX
operatingsystem.

Section3is areviewof the basicsof ADIFOR andanoverviewof its use.
Notation is introducedherewhichwill beusedthroughoutthe remainderof
this note.Section4 containsadescriptionof syntacticandsemanticfeatures
of the interfacebetweenthe ADIFOR generatedderivativeand the user's
driver codeof which the usermust beawarein order to write that driver
code. Section5 speaksto the informationcontentof Fortrandata objects
involvedin the interfacebetweenADIFOR generatedderivativecodeand
the user'sdriver code. Particularattention is givento the initialization of
seedmatricesandtheinterpretationof datareturnedbyADIFOR generated
codein the derivativeobjectsfor the dependentvariables.A smallexample
is presentedin section6 to illustrate someof the conceptspresentedin the
precedingpart of this note. Section7 is devotedto remarkson applying
ADIFORto ADIFOR generatedfirst derivativecodeto generatecodewhich



will calculatesecondderivatives.This presentssomedifficultieswhichone
wouldnot expectto encounterin processingordinarycodewith ADIFOR.

3 Review of ADIFOR basics and overview of

usage

The starting point for using ADIFOR to generate code to calculate deriva-

tives is a collection of Fortran subprograms written in (almost) ANSI stan-

dard Fortran 77 source code contained in one or more files (see [2, Section

3.3, "Acceptable FORTRAN 77 Source Files"]) which defines the dependency

of the function(s) to be differentiated on some variable(s). For purposes of

this discussion, this functional dependency will be represented abstractly as

f (x) where it is to be understood that x might represent one or more in-

put scalar values and f might represent one or more output scalar values.

The scalar components of this abstract f might be contained in in a single

Fortran variable or array, or might be the result of collecting together any

number of Fortran variables and/or arrays of arbitrary size and number of
dimensions. The same is true of the abstract x. The Fortran variables and

arrays which make up f are called the dependent variables and the Fortran

variables and arrays which make up x are called the independent variables.

However, the calculation of f must be accomplished by a single call to a sin-

gle subroutine subprogram (not function subprogram) which will be called

the top-level routine.

In addition to the restrictions in [2, Section 3.3], the user must insure
that no conflicts arise between names in the user's code and names in the

ADIFOR generated code. The ADIFOR generated Fortran code is written

in files. In the course of doing this, ADIFOR creates many names such as

file names, subprogram names, variable names, parameter names, and com-

mon block names. Many of these ADIFOR generated names start with the

same two characters, the ADIFOR naming characters. The default naming

characters are "g" and "_"; these can be changed by ADIFOR preproces-

sor options AD_PREFIX and AD_SEP, respectively. Some of these ADIFOR

generated names (examples include g_p_ and g_pmax_) are hardwired in

ADIFOR. Other ADIFOR generated names are created by prepending the

ADIFOR naming characters to a name which comes from the user's input.

If a file named code. f is processed, ADIFOR writes a file named g_code, f.



If a subroutinenamedxdot is processed,ADIFOR producesa subroutine
namedg_xdot. If a variablenamedx is processed,ADIPOR usesthe name
g_x for its derivativeobject and, sometimes,the variablenameldg_x for a
variableto holdthevalueof the first dimensionof this derivativeobject(the
rule hereseemsto bethat the letters ld areprependedto the nameof the
derivativeobject this is theonly caseof whichthe authoris awarein which
theADIPOR namingcharactersareusedotherthan at the beginningof the
name).

Since ADIPOR generates code by adding new lines of code to the user's

code (with the exception that the user's SUBROUTINE or FUNCTION line is

modified), the generated code contains all the user's original names and also

the ADIPOR generated names. The user must select ADIPOR naming char-

acters so that no naming conflict arises between the user's names and the

ADIPOR generated names. The same caution also applies to file names.

Except for Portran 77 intrinsic functions (like sin and log), all functions

and subroutines on which the top-level routine depends either directly or

indirectly must be included in the collection of subprogram files passed to

ADIPOR, [2, §3.2, p. 17]. This includes routines which the user normally

calls from libraries (e.g., LAPACK [4]). The values of the Portran variables

and/or arrays which make up x may be passed into the top-level routine

by placing the variables and/or arrays in the calling sequence of the top-

level routine, or in common blocks, or some of each. The variables and/or

arrays which make up f may be returned to the calling routine in the same

manner. Although ADIPOR permits multiple subprograms to reside in a

single subprogram file, the experience gained during the work mentioned in

section 1 indicates that there are advantages to placing each subprogram in

its own file. A file containing multiple subprograms can be processed into

files each containing a single subprogram using the UNIX utility fsplit.

The presence of Tab characters in Portran source code passed to ADIPOR
has been know to make ADIPOR crash. Tab characters can be introduced

into text files such as those which contain Portran source code by text editors

such as the UNIX editor vi without deliberate action on the part of the code

writer. If this problem arises, the UNIX utility expand can be used to replace

Tab characters in a file by an equivalent number of spaces.

The user's wishes are then made known to ADIPOR through the provision

of two items of information. The first is a corupositiorz file which lists the

names of those source code files. The rules governing composition files are

given in [2, g3.2,p. lr]; for an example, see [2, Pigure 4.3, p. 22]. The second



is a list of ADIFOR preprocessoroptionswhich,for purposesof this note,
will be assumedto becontainedin a script file (ADIFOR also allows the

option of passing some or all of them as command line parameters). The use

of preprocessor options is covered in [2, §3.1, pp. 17ff] with an example in [2,

Figure 3.1, p. 16].

At a minimum, the script file must set 5 preprocessor options:

AD_PROG This option must be set to the name of the composition file; e.g.:

AD_PROG=example. cmp

AD_TOP This option must be set to the name of the top-level routine; e.g.:

AD_TOP=c al cxhat

AD_IVARS This option must be set to a (comma separated) list of the in-

dependent variables, the Fortran variable and/or array names which

make up x; e.g.:

AD_IVARS=wl, w2, y

AD_DVARS This option must be set to a (comma separated) list of the depen-

dent variables, the Fortran variable and/or array names which make

up f.

AD_PMAX This option must be set to the integer which will be used in ADI-

FOR generated derivative code as the value of the INTEGER parameter

(default name "g_pmax_") which it uses as the first dimension of many

of the derivative objects. Proper choice of this option is based on the

user's determination of just exactly what derivative-related informa-

tion the user wishes the ADIPOR generated code to calculate. How

to choose AD_PMAXwill be explained at more length in section 5 of this
note.

Even if ADIFOR is already installed on the user's computer, the user

needs to be familiar with the information in [2, Section 2.1.1, "Unix In-

stallation and Configuration"]. This gives information on how the user's

computer environment must be configured in order to run the Adifor2.1

command which generates the Fortran code for derivative calculation. On

the author's (Linux) computer, this is accomplished by executing the follow-

ing commands, either by including them in a log-in initialization file (e.g.,

•cshrc) or by executing them directly in a window where the ADIFOR pro-

cessing is to take place:



setenv AD_HOME /home/dgiesy/ADIFOR_2.0D/ADIFOR2.0D

setenv AD_LIB /home/dgiesy/ADIFOR_2.0D/ADIFOR2.0D.PGI.Iib

setenv AD_OS Linux86

setenv PATH $AD_HOME/bin:SPATH

if ($?MANPATH == O) then

setenv MANPATH '':SAD_HOME/man

else

setenv MANPATH $AD_HOME/man:SMANPATH

endif

(If these commands are places in a script to be executed in the working

window, the script must be executed using the UNIX source command.)

Of these commands, the user must tailor the first three to the user's own

computer environment; the remainder are generic. Once the user's computer

environment has been configured, the files with the derivative code are gen-

erated using a command of the form:

% Adifor2. i AD_SCRIPT=script_file_name

The user should be aware that the execution of the ADIFOR command

generates many of files in the directory in which it is executed, and also

generates a subdirectory of the working directory whose default name is

AD_cache. Assuming the default ADIFOR naming characters "g_" are used,

the derivative calculating code which was generated by the ADIFOR run is

contained in files which have names of the form g_*. f (the * in g_*. f is the

UNIX "wild card" character and stands for an arbitrary character string).

These files are useful to the user. The remaining files and subdirectory might

pose a problem if the user needs to rerun ADIFOR (for example, after editing

some of the original source code or when making a second run to generate

second derivative code). The AD_cache subdirectory is supposed to contain

information which provides an incremental reprocessing capability, [2, p. 40].

However, the GCB group has found a situation (changes to an INCLUDE file)

where ADIFOR failed to detect that a subroutine needed to be reprocessed.

The people at Rice University who maintain ADIFOR have been notified of

this problem and will, presumable, fix it in future versions.

Until then, and for safety's sake and at a possible cost in processing time,

the procedure of removing all ADIFOR generated auxiliary files and subdi-

rectories after an ADIFOR processing run has been adopted. As long as the

default ADIFOR naming characters, g_, are used, this can be accomplished

on a UNIX system by the single command:



\rm -r AD_cache/g_*.[aA]* .*.f *.f
Note that everyperiodand tilda in this commandis significant without
them, someimportant filesmight bedeleted.

The userthen examinesthe derivativecodegeneratedby ADIPOR for
informationneededto makeuseof it. The usermust:

. Determine which of the AIDFOR generated routines and which (if any)

of the user's original routines in the configuration file are needed by the

derivative counterpart of the top level routine. A software tool (PTN-

CHEK) which can be used to generate the subprogram dependency

tree of a subroutine is discussed in the Appendix.

2. Determine what the derivative objects are in the calling sequence of

the top level routine and in ADIPOR generated common blocks.

3. Determine the calling sequence of the derivative counterpart of the top
level routine.

4. Write driver code to interface with the ADIPOR generated derivative
code.

5. Incorporate the driver code and the ADIPOR generated derivative code

into an application program.

6. Compile, link and load, and run the application package.

Information from stage 1 is used to determine which subroutines must

be examined at stage 2. Information from stages 2 and 3 are necessary to

stage 4. Information from stage 1 can also be used to avoid compiling and

linking unnecessary subprograms at stage 6. Once the application program

with the incorporated driver code and ADIPOR generated derivative code

is compiled, the configuration information set previously is also used during

the "link and load" phase to access the ADIPOR run-time libraries needed

by the ADIPOR generated derivative code.

4 Semantics of the interface to ADIFOR

generated code

Por each subroutine in each file named in the user's composition file (or, at

least, each subroutine which is determined by ADIPOR to contribute to the



dependencyof f on x), ADIPOR generatesa derivativesubroutinewhose
nameis gotten by prependingthe ADIPOR namingcharactersto the sub-
routine name. The purposeof this sectionis to give the userinformation
about howto usethe ADIPOR generatedsubroutines.The most common
scenariois that the useronly needsto knowhowto call the derivativesub-
routinecorrespondingto the top-levelroutine,andthis is thecasewhichwill
beemphasizedhere.

The readeris assumedto be familiar with [2, Section2.3.2, "Variable
Nomination"].There,the notion of an active variable is defined; the collec-

tion of active variables contains any of the Portran data items (scalar variables

or arrays) which fall on the chain of dependency between the independent

data items and the dependent data items (including the independent and

dependent data items themselves). Constraints of syntax may demand that

other variables also be declared active (this will be illustrated in section 6).
ADIPOR scans the code to be differentiated and determines which variables

it will consider to be active. All remaining variables are called passive.
The user needs to know which of the variables involved in the interface

between the user's driver code and the ADIPOR generated derivative code are

active. It is difficult to tell the user how to determine in advance of actually

running ADIPOR which of the variables will be active. Por example, it is

possible for a variable which does not depend on the independent variables to

be declared active by ADIPOR. This might happen if the top-level routine

calls some subroutine more than once, and if a truly active parameter is

passed to the subroutine in one of the calls, then for syntactical consistency

every parameter passed to the subroutine in the same parameter position
in other calls must be treated as active even if it is not in the chain of

dependency between the independent variables and the dependent variables.

Thus, the user needs to process the code to be differentiated with ADIPOR

and examine the generated derivative code to determine which variables are

being treated as active.

With each active Portran scalar or array data item, ADIPOR associates

a vector or array which is also named by prepending the ADIPOR naming

characters to the name of the Portran data item. In reference [2], these new

Portran data objects are variously called "directional gradient objects", "gra-

dient objects", "derivative objects", or (if the active Portran data item was

declared with ADIPOR preprocessing option AD_IVARS to be an independent

variable) "seed matrices". So, if an active Portran data object is named xhat,

then its derivative object will be named (under default options) g_xhat. This

10



sectionis devotedto providingthe readerwith informationabout whichof
thesederivativeobjects needto be declaredin the user'sdriver software
and/or usedin callswhichtheusermakesto the ADIPORgeneratedderiva-
tive code.Section5will discusstheinformationcontainedin thesederivative
objects.

Everyderivativeobject is anarray whichhasonemoredimensionthan
its parent, the Fortran data object which gave rise to it. Thus, each active

scalar has a one-dimensional derivative object, i.e., a vector; each active two-

dimensional matrix has a three-dimensional array for its derivative object;

and so on. If the parent of a derivative object was passed to the top-level

routine as a parameter in its argument list, the first dimension of the deriva-

tive object is specified by the user supplied driver code. ADIFOR specifies

the first dimension of all other derivative objects. These specifications will be

discussed in section 5. The remaining dimensions (if any) are copied directly

from the dimensions of its parent.

Active variables may be partitioned into three categories:

1. Variables which are local to the top-level routine or to one of the sub-

programs subordinate to it.

2. Variables which are global by virtue of being located in common blocks.

3. Variables which are dummy arguments to the top-level routine.

What the user needs to know about and do with a derivative object depends

on which of these categories its parent belongs to.

4.1 Local variables

The user does not need to do anything about these variables.

Caveat: This assumes that the user calls only the top-level routine.

The more advanced user who is calling one of the subordinate derivative

subroutines directly must treat any active variables appearing in its dummy

argument list under category 3.

4.2 Variables in common

The user must be concerned about any common block which is declared both

in the user's driver program for the top level subroutine and in any of the

11



subroutinesnamedin the compositionfile to be passedto ADIFOR. The
usermustdeterminethe answersto two questions:

1. Doesthe commonblockcontainsanyactivevariables?If so,

2. doesthe userneedeitherto initialize anyof the derivativeobjectsfor
activevariablesin thecommonblocksor to accessanyvaluesin anyof
the derivativeobjectsafterthe derivativecodehasexecuted?

The secondquestionwill beaddressedin section5. To answerthe first
question,the usermust searchthe ADIPOR generatedderivativecodefor
thecorrespondingADIPORgeneratedderivativeobjectcommonblock.The
namefor theADIPORgeneratedblockis formedfrom thenamefor theuser's
original commonblock by the usual prependingof the ADIPOR naming
characters.

If theanswerto thefirst questionis "yes",almostcertainlythe answerto
thesecondquestionis also"yes". If theanswerto bothquestionsis "yes",the
usermustdeclaretheADIPOR generatedderivativeobjectcommonblockin
thedrivercode.Thismeansnot onlycopyingtheADIPORgeneratedcommon
statementinto the driver programbut alsocopyingthe sizedeclarationsfor
all the dataarraysin the commonblock. In addition, thedeclarations

integer g_pmax_

parameter (g_pmax = ...)

which occur in the ADIFOR generated code must also be included in the

driver program. The parameter g_pmax_ is used by ADIPOR as the first

dimension of gradient objects in common blocks (and of gradient objects

whose parents are local variables). Note that if more than one common

block is involved, they all use the same declarations for g_pmax_ and the

g_pmax_ declarations should be copied into the driver program only once.

4.3 Dummy arguments to the top-level routine

There is a connection between the dummy argument list of a user-supplied

subroutine which has been passed to ADIPOR and the dummy argument

list of the corresponding derivative subroutine generated by ADIPOR. The

first argument to the derivative subroutine is an ADIPOR generated INTEGER

variable whose default name is g_p_ which the user must set when the deriva-

tive subroutine is called by the user's driver program. The value to choose

for g_p_ is explained in section 5.

12



The remainingdummyargumentsof the derivativecodearedirectly re-
latedto thedummyargumentsoftheoriginalcode.Thenatureoftherelation
dependsonwhethertheoriginaldummyargumentwasdeclaredto beactive
or passiveby ADIPOR.A passivedummyargumentof the original codeis
simply copieddirectly into the dummyargumentlist of the derivativecode
without anychangeor additionalarguments.

An activeargumentof the originalcodeis alsocopieddirectly into the
argumentlist of the derivativecode.However,two moreargumentsareput
in the argumentlist of the derivativecodedirectly after this copyof the
original argument.Perhapsthis is bestillustratedby example.If the active
argumentis xhat, thenat the placein the argumentlist of the originalcode
wherexhat appears,the derivativecodehasthe threearguments:

xhat, g_xhat, Idg_xhat

This again assumes that the defaultnaming characterswere used. IfADI-

FOR had processedthisexample under preprocessingoptionsAD_PREFIX=h

and AD_SEP=$, the threearguments in the derivativecode would have been:

xhat, h$xhat, Idh$xhat

Suppose further that in the original code xhat has been declared:

double precision xhat(5,3)

The user must decide what the first dimension of g_xhat is going to be

this subject is covered in section 5. Suppose for the purpose of illustration

that the first dimension has been chosen to be 20. Then, in the driver code,

the user must declare g_xhat to be a double precision array of dimensions

(20,5,3). Further, prior to the call to the derivative subroutine, ldg_xhat

must have been set to 20 (or the literal value 20 must be used in the actual

call).

This must be repeated for each active argument in the calling sequence of

top-level routine (or whatever derivative subroutine the user wishes to call).

Notice that this depends on which of the dummy arguments to the original

top-level subroutine have been declared active by ADIFOR. Thus, the user

must first apply ADIFOR to the code to calculate f (x) before the user can

determine all the needed information to write the driver program for the
derivative code.

Observe that every parameter of the original subroutine appears in the

calling sequence of the derivative subroutine. Furthermore, all of the code

functionality of the original subroutine is duplicated in the derivative subrou-

tine. This means that when the derivative subroutine is called, then all the

original subroutine calculations are performed, and returned to the user just
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as the original subroutine did. Some derivative information is also calculated

and returned. This is the subject of section 5.

5 Information in ADIFOR generated Fortran
data items

This section supplements and elaborates on [2, Section 2.4, "Functionality

of ADIFOR 2.0-Generated Code"] and [2, Appendix A, "Seed Matrix Ini-

tialization"]. Information will be given as to which of the derivative objects

needs to be initialized, and to what, prior to a call to ADIFOR generated

derivative code; how to determine the proper value for the ADIFOR prepro-

cessor option AD_PMAX and the proper value to pass to the ADIFOR generated

dummy argument g_p_; and what derivative information is being returned

by the ADIFOR generated derivative code.

5.1 Scalar f, vector x

For simplicity, first consideration will be given to the case that the dependent

variable f is a scalar residing in Fortran variable f, and that the vector x

of independent variables resides in a single Fortran vector array x. Assume

that the top-level routine starts out:

subroutine func (n,x, f)

integer n

double precision x(*), f

Further assume that this subroutine has been processed by ADIFOR with x

specified as the independent variable, f as the dependent variable, and with

the option AD_PNAX set to 20. Then the user's interface to the derivative code

could well be defined by the Fortran statements:

subroutine g_func(g_p_, n, x, g_x, ldg_x, f, g_f, ldg_f)

integer n

double precision x(*), f

integer g_pmax_

parameter (g_pmax_ = 20)

integer g_p_, Idg_f, Idg_x

double precision g_f(Idg_f), g_x(Idg_x, *)
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The linear combination of partial derivatives which is the "natural" out-

put of derivative related information from the ADIFOR generated derivative

subroutine g_func for this case is the vector inner product between the gra-

dient of f and a vector of coefficients, say v, which contains the same number

of elements as the vector x of independent variables. These coefficients are

passed by the user to the derivative subroutine by storing them as a row

of the gradient object g_x of the independent variable. The function of the

first dimension of the gradient objects is to provide storage for the sets of

coefficients used by the ADIFOR generated subroutines in the linear com-

binations of partial derivatives which they compute and to provide storage

for intermediate and final computed results which use theose coefficient sets.
The freedom to select what will be in the rows of the seed matrices

(the gradient objects for the independent variables) gives the user

a great deal of flexibility in what derivative related information will
be calculated.

If the user wants the partial derivative of f with respect to one of the

scalar variables in x, the user can choose v to be the "elementary" vector

the same size as x with all zeros except for a single 1 in the proper position.

If the user wants a directional derivative of f, the user can choose v to be

a unit vector pointing in the desired direction. If the user already knows

ax/awand wants to calculate of law by the chain rule:

Of Of ax

Ow Ox Ow'

the user can find one component of Of/0w by choosing v to be the transpose

of a column of Ox/Ow. In fact, the user can calculate all of Of/Ow by

setting each row of the derivative object of x to the corresponding column of

Ox/Ow; i.e., g_x is set to (Ox/Ow)', the transpose of Ox/Ow. If this is done

and g_func is called, g_f will contain (0f/0w)' (@ [2, p. 10, p. 46]).
The user can do this because one of the features of the derivative code

generated by ADIFOR is that, in one call, it will calculate the inner product

of the gradient of f with as many vectors as the user wishes. When the

user calls an ADIFOR generated subroutine, the user tells the subroutine

how many linear combinations of the gradient the user wishes the code to

calculate by the user's setting of the actual argument value corresponding to

the dummy argument g_p_. Suppose the user wishes the complete gradient

of f. A natural way to do this is to initialize g_x to the identity matrix. Since

row i of the identity matrix is a vector with a i in its ith component and zeros
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elsewhere,its innerproduct with the gradientof f is Of/Oxi. This value is

returned to the user by g_func in vector g_f as array element g_f (i).

The user could even combine the calculation of the full gradient with

one or more directional derivatives or other gradient-vector inner products

in a single call by properly initializing the seed matrix (gradient object of

the independent variable). The only caution here is that the larger the seed

matrices are, the longer the derivative code takes to execute and the more

memory it requires.

Choice of AD_PMAX: The value the user assigns to the ADIPOR

preprocessing option AD_PMAXis used by ADIPOR as an upper bound for the

number of linear combinations of partial derivatives which the derivative code

will be required to compute on any one call. The derivative objects which are

passed to derivative code through the calling sequence reside in arrays which

are declared by the user to have whatever first dimension the user chooses,

and that first dimension is passed to the derivative code through calling se-

quence parameters like ldg_x and ldg_f in the example just given. However,

ADIPOR must assign the first dimension to derivative objects whose parents

are in common blocks or are local to the original code. The user's AD_PMAX

value is assigned to ADIPOR generated INTEGER parameter g_pmax_, and

ADIPOR uses this parameter for the first dimension of common block and

local variable gradient objects. The gradient code will check if the number

of inner products requested in g_p_ is greater than the value of g_pmax_.

If it is, then ADIPOR generated derivative objects for local and common

block variables are not large enough for the requested calculation, an error

condition exists, and the ADIPOR generated code will stop execution.

Recapitulation: In order to generate code to calculate derivative re-

lated values of a scalar valued function f of a single vector variable x and

put it to use in an application, the user must:

1. Prepare the ADIPOR script and composition files. The user must know

an upper bound on the number of gradient-vector inner products which

the user will want the gradient code to calculate on any one call, and

assign that number to the ADIFOR preprocessing option AD_PMAX.

2. Use ADIFOR to generate the gradient code. The user must:

(a) Prepare the computer environment for ADIPOR by setting the

proper environment variables as in [2, Section 2.1.1, "Unix Instal-

lation and Configuration"].
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(b) ExecuteADIFOR by a commandof the form:
_oAdifor2.1 AD_SCRIPT=script_file_narne

For ADIFOR 21.D, it is probablysafestto do this in a working
directoryfromwhichhasbeenremovedanyfilesandsubdirectories
generatedby anyearlierexecutionof tdifor2.1.

3. Write thedriver codefor the gradientcode.The usermust:

(a) Examinethe ADIFOR generatedgradientcodeto determinethe
exact form of the interface.This includesthe callingsequenceof
thegradientcounterpartof thetop-levelroutineandanyADIFOR
generatedcommonblockscontaininganygradientobject.

(b) Initialize gradientobjectsaccordingto section5.5. In particular,
for eachcall to thegradientcode,determinewhatgradient-vector
inner productsaredesired.Declarearraysg_x and g_f of large
enoughfirst dimensionand (for g_x) appropriateseconddimen-
sion. Set g_p_to the numberof theseproducts. Initialize the
rowsof g_xwith the multiplier vectorsfor theseproducts.

(c) After thecall to thegradientcode,harvestthe resultcorrespond-
ing to row i of g_x from g_f (i).

4. Compileandlink the applicationusingthe ADIFORgeneratedderiva-
tive codeandreferencingthe ADIFOR run-timelibraries,etc. [2,Sec-
tion 2.1.1,"Unix Installationand Configuration"]in the link phase.

Notation convention: This notehasbeenwritten (and,for the most
part, will continueto bewritten) asif actualargumentsin callsto ADIFOR
generatedgradientcodehavethe samenamesasthe dummyargumentsin
the codebeingcalled. Of course,the usercannamevariablesin the driver
codewith anylegalFortran77variablename.Theuseof thesamenamefor
actualargumentsin the drivercodeanddummyargumentsin the ADIFOR
generatedderivativecodeis just for clarity of identifying whichgoeswith
which.

5.2 Scalar f, arbitrary independent variables

Next, consideration is given to the case that the dependent variable is a

single scalar variable, but the independent variables for differentiation are
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distributedoverseveralFortrandataobjectswhichmaybea mixtureof any
numberof scalarvariables,vectors,matrices,and/or arraysof higherdimen-
sion. When an illustration is needed,the exampleof subroutine funcl
will beusedasa top-levelroutine. This subroutinestartsout:

subroutine funcl (n,x,y,z,f)
integer n

double precision x(*), y, z(3,5), f

Assume that the function of the dummy argument n is to pass to funcl the

actual length of the vector being passed in argument x. Assume that this

subroutine has been processed by ADIFOR with the independent variables

specified to be x, y, and z; the dependent variable specified to be f; and the

option AD_PMAX set to 35. Then the user's interface to the derivative code

could well be defined by the Fortran statements:

subroutine g_funci(g_p_, n, x, g_x, ldg_x, y, g_y, ldg_y,

*z, g_z, ldg_z, f, g_f, ldg_f)

integer n

double precision x(*), y, z(3, 5), f

integer g_pmax

parameter (g_pmax_ = 35)

integer g_p_, ldg f, ldg_y, ldg x, ldg_z

double precision g_f(ldg_f), g_y(ldg_y), g_x(ldg_x,

g z(ldg z, 3, 5)

*),

The "natural" output of derivative related information from the ADIFOR

generated derivative subroutine g_func 1 for this case is again a collection of

linear combinations of the partial derivatives of f with respect to each vari-

able or array element in the independent variables. But, because of the

greater complexity of the data structures containing the independent vari-

ables as opposed to the previous single vector case, some clarification is in
order.

The gradient of f has one scalar component for each variable and each

array element of an array in the list of independent variables. It is convenient

to think of this gradient as being stored in a collection of variables and arrays

which is conformable with the independent variables; by which is meant that

the hypothetical collection of gradient variables and arrays matches the list

of independent variables one for one in number of dimensions and size. (An

inspection of ADIFOR generated code reveals that the gradient is not, in

fact, stored in this manner this is just a mental picture.) Referring to the
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exampleg_func1,letsgivenamesto thesehypotheticalvariablesandarrays:
dfdx representsa vectorthe samelengthasx, dfdy representsa scalar,and
dfdz representsa 3 by 5matrix. Then, for example,dfdz(2,3) is imagined
to containthe partial derivativeof f with respectto z(2,3).

If g_func1is to form a linearcombinationof the partial derivativesof f,
it needscoe_cientsfor that linearcombination.Think of thesecoe_cients
asbeingstoredin anothercollectionof Fortrandata objectswhich is con-
formablewith the independentvariables.This isnot hypothetical,it actually
happens;andit is the userwho providesthis data to g_func1. For eachset
of coe_cientsfor whichtheuserwantsthe linearcombination,theuserpicks
an integerto useasa first indexin the gradientobjectsfor the independent
variablesandstoresthe coe_cientsin the gradientobjectsusingthat inte-
gerasthe first subscript.Thus,the user'sthird set of coe_cientswouldbe
storedin locationsg_x(3,i) for i = 1, ..., n; y(3); andg_z(3,i,j) for i
- 1,...,3 and j = 1, ..., 5.

Somevocabularyfrom the lexiconof Fortran 95 (see,e.g., [5, Section
6.4.4,pp. 165ff])is introducedhere:

Therank of anarrayis the numberof dimensionsin the array.Forconsis-
tency,a scalaris consideredto haverank 0.

The extent of anarray in oneof its dimensionsis the numberof elements
in that dimension.

The shape of anarrayis an integervectorcontainingthe samenumberof
elementsas its rank, whereeachelementof the vectoris the extent in
the correspondingdimension.For consistency,the shapeof a scalaris
a vectorof length0, sometimesreferredto asthe emptyvector.

The sizeof an arrayis the productof its extents,i.e.,the total numberof
elementsin the array.

An array element is anyoneof the scalarelementswhichmakeup the
array.

An array section of anarrayis definedbyspecifyingonenon-emptysubset
of the allowablesubscriptsfor eachdimensionand formingthe sub-
array which usesthe subscriptsfrom thesesubsetsin everypossible
way. If thesesubscriptsubsetscontain only oneelementeach,then
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only anarrayelementis specified,and the word "section"is not used
for this case.

Usingthis vocabulary,the relationshipof a derivativeobjectto its parent
canbe restated.The rankof the derivativeobject is largerby onethan the
rankof its parent,andits shaperesultsfrom prependinganewdimensionto
the shapeof the parent.That newdimensionis eithersuppliedby the user
(in the casethat the parentof the derivativeobject is a dummyargument
in the callingsequenceof the top levelroutine)or is set byADIPOR asthe
valueof the ADIPOR preprocessoroptionAD_PNAX.

A terminologyis introducedhere.By the ith layer of a gradient object

is meant the array section (or, possibly, array element) of the gradient object

defined by fixing its first index at the value i while allowing any other indices

to take on all of their allowable values. For two-dimensional arrays such as

were used in the example in section 5.1, layer (as used here) is synonymous

with row. Each layer of a gradient object has exactly the same size and

shape as its parent object. Using this terminology, the coefficients of the

third linear combination of the previous paragraph are stored in the third

layer of the gradient objects for the independent variables.

The linear combinations are now formed by multiplying, for each i be-

tween 1 and the user input value of g_p_, each of the hypothetical gradient

variables and arrays element by element with the corresponding data found

in layer i of the gradient objects for the independent variables. These prod-

ucts are then added up, and the result stored in layer i of gJ. The final

effect is as if the following hypothetical Fortran 77 code fragment had been
executed:

integer g_i_

Code to calculate the gradient values and place them

in the hypothetical variables and arrays

"dfdx", "dfdy", and "dfdz".

do g_i_ = 1, g_p_

g_f(g_i_) = O.Od+O0

doi=l, n

g_f(g_i_) = g_f(g_i_) + dfdx(i)*g_x(g_i_,i)

enddo

g_f(g_i_) = g_f(g_i_) + dfdy*g_y(g_i_)
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do i = 1, 3
do j = i, 5

g_f(g_i_) = g_f(g_i_) + dfdz(i,j)*g_z(g_i_,i,j)
enddo

enddo
enddo

As before, the user must decide which linear combinations involving the

partial derivatives of f to request from the derivative code. And, as before,

the user can find the partial derivative of f with respect to a chosen one of

its independent scalar variables by setting a layer of the independent variable

gradient objects to all zeros except for a single i in the position corresponding

to that one scalar variable. However, if the user wishes a complete gradient

of f, then the user must contend with the limitation of ADIFOR that the

layers of the gradient objects are indexed by a single integer variable, so that

the user must arbitrarily impose an enumeration on all of the desired partial

derivatives.

This will be illustrated by reference to the example from earlier in this

section. The problem is to make a call to g_funci which returns the deriva-

tives of f with respect to y and each of the scalar components of x and z.

The mathematical symbol n is used to to represent the number of compo-

nents of x actually in use, and this value is contained in Fortran variable n.

So, the variable x contains n scalar elements, the variable y contains 1 scalar

element, and the variable z contains 15 scalar elements.
Imposing an enumeration on the desired n + 16 partial derivatives means

selecting one of the (n + 16)! permutations of these n + 16 scalar elements. For
purposes of illustration, the order chosen here is to first take the elements of
x in index order, then the single element y, then the elements of z as Fortran
traditionally stores them, i.e., in column major order. The variables are then
considered to be in the order x(1), ..., x(n), y, z(1,1), z(2,1), z(3,1),
z(1,2), ..., z(3,5). This means that the user must initialize layer 1 of the
seed matrices so that the linear combination of partial derivates returned is
just 0f/0xl. Layer n+l is set to return 0f/0y, layer n+2 to return 0f/0zl,1,

etc. Further assume that all calls to the code have n _< 30, so n + 16 _< 46. A
minimal value of ADIFOR preprocessor option AD_PMAXfor this application
is 46. The following Fortran 90 code fragment shows how g_x, g_y, and g_z
can be initialized to instruct g_funcl to calculate the gradient of f:

! The gradient object s have previously been given dimensions
! g_x(46,30), g_y(46), g_z(46,3,5), and g_f(46)
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! At this point, code should be included to initialize the variables

! n, x, y, and z as they would have been initialized for a call to

! the parent routine, subroutine funcl.

! The following lines initialize the ADIFOR generated variables:

g_p_ = n+16

ldg_x = 46

ldg_y = 46

ldg_z = 46

ldg_f = 46

! For starters, completly zero out the gradient objects:

g_x = 0.0d+00

g_y = 0.0d+00

g_z = 0.0d+00

g_f = 0.0d+00 ! This one should be unnecessary, but is

! done as a safety measure.

! Set selected elements of the seed matrices to 1.0 so that the

! desired derivative values will be returned in g_f.

! The INTEGER variable "ln" represents the derivative object layer

! number and steps through the enumeration of the derivatives.

in =0

doi =1, n

in = ln+l

g_x(ln,i) = 1.0d+00
enddo

in = ln+l

g_y(ln) = 1.0d+00

doj =1, 5

doi =1, 3

in = ln+l

g_z(ln,i,j) = 1.0d+00

enddo

enddo

! That's it. Now make the call that calculates the derivatives.

call g_funcl(g_p_, n, x, g_x, ldg_x, y, g_y, ldg_y, &

& z, g_z, ldg_z, f, g_f, ldg_f)
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! Now the first n+16 elements of g_f contain the partial derivatives of
! f with respect to the variables x(1) ..... x(n), y, z(1,1), z(2,1),
! z(3,1), z(1,2) ..... z(3,5) in that order.

5.3 Arbitrary dependent variables, arbitrary indepen-

dent variables

Finally, consideration is given to the case that the dependent variables and

the independent variables for differentiation are each distributed over several

Fortran data objects which may be a mixture of any number of scalar vari-

ables, vectors, matrices, and/or arrays of higher dimension. Conceptually,

this is actually a fairly small step from the case considered in section 5.2.

Basically, what was done in the case of a scalar dependent variable is done

in the present case on an element by element basis to each element of each

of the arrays of dependent variables.

Specifically, suppose that two of the dependent variables are specified by
the Fortran code lines:

double precision fl, f2(5,3,7)

common /outl/ fl, f2

Then, assuming that the ADIFOR script file included the option specifica-

tion AD_PNAX=244, the corresponding derivative object will be specified by
the code lines:

integer g_pmax_

parameter (g_pmax =244)

double precision g fl (g_pmax), g f2(g_pmax ,S,3,7)

common /g outl/ g fl, g f2

Everything which was said in section 5.2 about the relation of g_f to

f and the gradient objects for the independent variables applies without

modification to the relation of g_f i to fi and the gradient objects for the

independent variables of the present example. The same is also true on an

element by element basis for g_f2. So, for example, after the derivative code

of this example is called, g_f2 (i3i, 2,3,4) contains the linear combination

of the partial derivatives of f2(2,3,4) with the coefficients found in layer

number 131 of the gradient objects of the independent variables input by the
user to the derivative code.
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5.4 Gradient of a function of several Fortran vector

variables

This section focusses on the case that the user wishes to calculate the Jaco-

bian of the dependent variables and that the independent variables reside in

several Fortran scalar and/or vector variables. This is a special case of the

case covered in section 5.3. This case is common enough, and there is a seed

matrix generation technique which is elegant enough, that it deserves spe-

cial mention. This section provides expansion and (hopefully) clarification

of ideas presented in [2, Appendix A.3].

The general technique will be illustrated by an example. Suppose that the

independent variables are w, x, y, and z where w is a vector of length 2, x and

y are scalars, and z is a vector of length 3. Then, counting each component

of a vector variable, there are a total of 7 independent scalar variables, and to

represent the gradient of the dependent variable(s), gradient objects will need

7 layers. Declare the seed matrices to have only the necessary dimensions:

g_w has dimensions (7,2), g_x and g_y each have dimension (7) (which, for

purposes of this discussion, should be thought of as matrices of dimensions

(7,1); i.e., column vectors), and g_z has dimensions (7,3). As stated in

section 5.2, an enumeration must be imposed on the 7 scalar components of

these 4 Fortran variables. A natural way to enumerate the scalar components

is to picture the vector and scalar Fortran variables as column vectors (the

scalars being vectors of one component) and imagine them to be stacked up

in the order they have been being considered; i.e., w, x, y, z. Each component

of this stack corresponds to one layer in each of the gradient objects. The

seed matrices are to be initialized so that layer i of each dependent variable

gradient object contains the partial derivative of that dependent variable with

respect to component i of this imaginary stack of independent variables.

The easiest way to picture the proper initialization of the seed matrices

to accomplish this is to imagine the seed matrices placed side-by-side in the

already established order:

g_w, g_x, g_y, g_z

Collectively, these matrices cover a 7 by 7 matrix. It is no coincidence that

the collective matrix is square going through this exercise with an arbitrary

collection of vector and scalar independent variables will always result in a

collection of seed matrices whose horizontal juxtaposition will collectively

amount to a square matrix whose order is exactly the number of individual

scalar components from all the independent variables collectively.
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The correct initialization of the seedmatricesis the one whichmakes
this horizontaljuxtapositionof seedmatricesbe the identity matrix. In the
examplebeingconsideredhere,the seedmatrices

g_w,g_x,g_y,g_z
shouldbeinitialized to

1 0
0 1
0 0
0 0
0 0
0 0
0 0

0
0
1
0 ,
0
0
0

-0
0
0
1 ,
0
0
0

0 0
0 0
0 0
0 0
1 0
0 1
0 0

0
0
0
0 ,
0
0
1

respectively.
Someprogrammershavefoundit a little tricky to get theonesin just the

correct locationsof the seedmatrices.This is particularly true in casethe
dimensionsareparameterizedby variablesinsteadof beingpredetermined
constantsasthey are in the examplewhich is beingusedin this section.
An alternativeto individually initializing seedmatricesfor eachindependent
variableis to initialize a singleidentity matrix and thenusepiecesof it for
the seedmatrices.

To continuetheexampleof this section,supposethat a 7 by7matrix dpi
(mnemonicfor "doubleprecisionidentity") hasbeendefinedin the user's
driver codeand set to the identity matrix. Supposethat the SUBROUTINE
declarationline of the top-levelsubroutineis:

subroutine tls (w,x,y,z,f)

Suppose that the interface to the ADIFOR generated counterpart is:

subroutine g_tls (g_p_,w,g_w, ldg_w,x,g_x, ldg_x,y,g_y, ldg_y,

* z, g_z, ldg_z, f, g_f, ldg_f)

Then, once w, x, y, and z have been initialized, a Fortran 77 call which would

calculate the desired gradient of f would be:

call g_tls(7,w,dpi(i , i) ,7,x,dpi(i ,3) ,7,y,dpi(i ,4) ,7,

* z,dpi(i ,5) ,7,f,g_f,7)

This passes the proper submatrices of the identity matrix for each of the seed

matrices. Using Fortran 90 syntax, the same task could be accomplished with
the call:

call g_tls(7,w,dpi(:,l:2),7,x,dpi(:,3),7,y,dpi(:,4),7,&

& z,dpi( : ,5:7) ,7,f,g_f,7)
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Here,explicitly specifiedsections of the dpi matrix are passed in each seed

matrix argument slot.

5.5 Preparing to call ADIFOR generated subroutines

In this section, consideration is given to initializations the user must make

in the driver code to call the top-level gradient subroutine generated by
ADIFOR.

It has already been seen that all data objects which were present in the

interface between higher level code and the user's top-level routine are also

present in the interface between the user's driver code and the gradient soft-

ware generated by ADIFOR. These data objects must be initialized exactly

as they are if the top-level routine is to be used to calculate a value of the

function. The ADIFOR generated derivative code also used three types of

ADIFOR generated variables to interface with the user:

1. An integer variable (default name, g_p_).

2. For each variable in the interface to the top-level routine which is de-

clared to be active by ADIFOR, a corresponding gradient object (for

example, if xhat is an active variable, then the default name of the

corresponding gradient object is g xhat).

3. For each gradient object which occurs in the calling sequence of the

gradient code corresponding to the top-level routine, an integer variable

(for example, if the gradient object is named g xhat in the ADIFOR

generated derivative code, then the associated integer variable is called

ldg_xhat there.

The type 1 integer variable, g_p_, must be initialized by the user to

the number of linear combinations of the partial derivatives of each scalar

component of the dependent variables the user wishes to calculate using

some user supplied coefficients. This value must never be larger than the

value given to the ADIFOR preprocessor option AD_PNAX. Reminder: In the

user's driver code, if the user is using the ADIFOR dummy parameter name

g_p_ for the actual argument name, then the user must include an INTEGER

declaration for the variable g_p_. Otherwise, the Fortran compiler will, by

default, declare g_p_ to of type REAL.

For every gradient object in the calling sequence of the gradient code

corresponding to the top-level routine, the user must include a declaration
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of that array in the user'sdriver code;and in that declaration,the user
must choosea valuefor the first dimension. That valuemust beat least
as big asthe largestvalueof g_p_whichthe userwill everusewith that
gradientobject.Thevalueof that first dimensiondeclarationmustbepassed
to the gradientcodefor the top-levelroutine in the correspondingtype 3
integervariable. Helpful hint: for gradientobjectsin ADIPOR generated
commonblocks,the first dimensionhasbeenassignedby ADIPOR and the
usershouldjust copytheADIPOR generateddeclarationsfor thesevariables
andcommonblocksinto the user'sdriver code.

Of the type 2 variables,thosebelongingto independentvariablesare
referredto in reference[2]asseedmatrices.Theusermustinitializetheseseed
matrices.The subjectof initializing seedmatricesis coveredin sections5.1
through5.4of this TechnicalMemorandumaswellas,for example,sections
2.5and 4 and appendixA of reference[2].

Of theremaininggradientobjects,thesaferecommendationis to setthem
all to zeros.If the parentof a gradientobjectis beingusedto input data to
the top-levelroutine,thenzeroingout its gradientobjectis necessary.(This
assumesthat the data in the parent objectdoesnot dependon anyof the
independentvariables. If this assumptionis false, then the userprobably
hasnot chosenthe correcttop-levelroutine.) If the parentobject is never
referencedby the top-levelroutine or any of its subordinatesubprograms
until oneof them setsvaluesin it, then there is no theoreticalreasonwhy
the associatedgradientobjectwouldneedto beinitialized; but noharmcan
comefrom zeroingit out.

6 An example

In the following example, a 2 by 2 matrix Y (contained in the Fortran array y)

depends on the 2 by 2 matrix X (contained in the Fortran array x) according
to the formula

Y - X lAX

where A is a 2 by 2 constant matrix (contained in Fortran array a) and X' is

the transpose of X. This calculation is made in two steps with intermediate

results stored in a 2 by 2 workspace matrix W (contained in the Fortran

array w):

W -- AX
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y -- X/W

Thecalculationisdoneby subroutine test whose dummy argument list
includes the arrays x, y, and w. The coefficient array a is communicated to
subroutine test through common block/dataset/. The top-level routine
is in file test .f:

subroutine test(x,y,w)

double precision a(2,2), x(2,2), y(2,2), w(2,2)

common /dataset/ a

call DGEMM( 'N', 'N', 2, 2, 2, 1.0d0, a, 2, x,

call DGEMM( 'T', 'N', 2, 2, 2, 1.0d0, x, 2, w,

return

end

2, 0.0d0, w, 2 )

2, 0.0d0, y, 2 )

The subroutine, DGEMM, called twice by test. f, is a matrix-matrix multiply

routine from the BLAS (Basic Linear Algebra Subprograms, [6] and [7]).
The ADIFOR script file test. adf for this top-level routine is:

AD_PROG=test.cmp

AD_TOP=test

AD_IVARS =x

AD_DVARS =y

AD_PMAX=4

AD_OUTPUT_DIR=.

Notice that the single independent variable x and the single dependent vari-
able y are both 2 by 2 matrices. The complete gradient 0Y/0X is desired,
and X is made up of 4 scalar variables (x is made up of 4 array elements),
so the ADIFOR preprocessor option AD_PMAX has been set to 4. The script
file references the composition file test. crop:

test.f

dgemm.f

lsame.f

xerbla.f

The two files lsame, f and xerbla, f contain subroutines called by subroutine

DGEMM(which is in dgemm, f) and so must be available for ADIFOR to scan.

As it turns out, they are not involved in the dependency of y on x, so no

derivative code is generated for either of them.

After the user's computer environment has been prepared according to

the instructions in [2, Section 2.1.1], the gradient code can now be generated

using the command:

% Adifor2. i AD_SCRlPT=test.adf
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Following the execution of the Adifor2.1 command, many new files (some

hidden, i.e., named with an initial period) and a subdirectory (AD_CACHE)

appear in the working directory. Of interest to the user are files related

to those listed in the composition file and containing the derivative code.

Two are generated, g_test.f and g_dgemm.f. The user must also take

note of what is NOT generated; even though the composition file contains

lsame.f and xerbla.f, there is NO g_lsame.f or g_xerbla.f generated.

This indicates that ADIFOR has determined that lsame.f and xerbla.f

were not involved in the dependency of y on x.

Information which the user needs to write a driver for the derivative

code is contained in the top-level derivative routine, g_test. This is in file

g_test, f which (minus some ADIFOR generated prefacing comments) looks
like:

c

c

subroutine g_test(g_p_, x, g_x, ldg_x, y, g_y, ldg_y, w, g_w, ldg_

*w)

double precision a(2, 2), x(2, 2), y(2, 2), w(2, 2)

common /dataset/ a

double precision dl, d2

integer g_pmax_

parameter (g_pmax_ = 4)

integer g_p_, ldg_x, ldg_y, ldg_w

double precision g_x(ldg_x, 2, 2), g_y(ldg_y, 2, 2), g_w(ldg_w,

*2, 2), g_a(g_pmax_, 2, 2)

common /g_dataset/ g_a

integer g_ehfid

save /g_dataset/

external g_dgemm

data g_ehfid /0/

call ehsfid(g_ehfid, 't est','g_test.f')

if (g_p_ .gt. g_pmax_) then

print *, 'Parameter g_p_ is greater than g_pmax_'

stop
endif

dl = 1.0d0

d2 = 0.0d0

call g_dgemm(g_p_, 'N', 'N', 2, 2, 2,

* g_x, ldg_x, 2, d2, w, g_w, ldg_w, 2)

dl = 1.0d0

d2 = 0.0d0

call g_dgemm(g_p_, 'T', 'N', 2, 2, 2, dl, x, g_x, ldg_x, 2, w, g

*_w, ldg_w, 2, d2, y, g_y, ldg_y, 2)

dl, a, g_a, g_pmax_, 2, x,
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return
end

An examination of the dummy parameter list of subroutine g_test

shows which of the dummy parameters to subroutine test have been pro-

moted to active status by ADIPOR. It is seen that the independent variable

x, the dependent variable y, and the workspace array w are all active. Scan-

ning subroutine g_test for common blocks, it is discovered that ADIPOR

has generated a new common block, /g_dataset/ and placed a derivative

object, g_a, for array a in it. The user will need to take this into account in

writing the driver code.
While the code to be processed by ADIPOR must be in Fortran 77 and

the resulting derivative code is also, the driver code could be in any lan-

guage which permits of compilation into compatible binaries. The following
example driver code is written in Fortran 90. In the following listing of file
driver.f90, the leading line numbers are not part of the actual code, but
have been added for purposes of subsequent discussion:

1 program driver
2 !

3 ! The code which is processed by ADIFOR must be Fortran 77,

4 ! but it can be compiled by a Fortran 90 compiler and driven
5 ! by a Fortran 90 driver.
6 !

7 ! The following declarations have been lifted from g_test.f
8 ! and edited
9 !

10 double precision a(2, 2), x(2, 2), y(2, 2), w(2, 2)
11 common /dataset/ a

12 integer, parameter :: g_pmax_ = 4
13 integer g_p_, ldg_x, ldg_y, ldg_w
14 double precision g_x(4, 2, 2), g_y(4, 2, 2),&
15 &g_w(4, 2, 2), g_a(g_pmax_, 2, 2)

16 common /g_dataset/ g_a
17 save /g_dataset/
18 !

19 ! Although the fir st layer of g_y could be used to return a single

20 ! linear combinati on of partial derivatives for the second cal 1 to
21 ! g_test, a new array is introduced for didactical reasons. It
22 ! need not follow the ADIFOR naming convention.
23 ! The new array is greatly overdimentioned.
24

25 double precision gradobj(9, 2, 2)
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27 ! Now put initial data values in original code arrays

28 !

29 a = reshape((/6.0d0, 1.0d0,1.0d0,6.0d0/),(/2,2/))

30 x = reshape((/3.0d0,-1.0d0,2.0d0,-7.0d0/),(/2,2/))

31 !

32 ! Set up the seed matrix for a full gradient calculation
33 !

34 ! Layer 1 computes (partial y) / (partial x(1,1))

35 g_x(1,:,:) = reshape((/1.0d0,0.0d0,0.0d0,0.0d0/),(/2,2/))

36 ! Layer 2 computes (partial y) / (partial x(2,1))

37 g_x(2,:,:) = reshape((/0.0d0,1.0d0,0.0d0,0.0d0/),(/2,2/))

38 ! Layer 3 computes (partial y) / (partial x(1,2))

39 g_x(3,:,:) = reshape((/0.0d0,0.0d0,1.0d0,0.0d0/),(/2,2/))

40 ! Layer 4 computes (partial y) / (partial x(2,2))

41 g_x(4,:,:) = reshape((/0.0d0,0.0d0,0.0d0,1.0d0/),(/2,2/))

42 !

43 ! Zero out remaining gradient objects

44

45 g_y = 0.0d0

46 g_w = 0.0d0

47 g_a = 0.0d0

48 !

49 ! set integer arguments to g_test

50

51 g_p_ = 4

52 ldg_x = 4

53 ldg_y = 4

54 ldg_w = 4

55 call g_test(g_p_, x, g_x, ldg_x, y, g_y, ldg_y, w, g_w, ldg_w)

56

57 ! Now, y=x'*a*x and g_y contains dy/dx.

58 ! Code to use the Jacobian array could be put here.

59

60 ! Set up the seed matrix so g_test will calculate a linear

61 ! combination of the partial derivatives of y.

62 ! Put the desired coefficients in layer 1.

63 g_x(1,1,1) = 2.0d+0

64 g_x(1,2,1) = -3.5d+0

65 g_x(1,2,1) = 0.3d+0

66 g_x(1,2,2) = 1.414d+0

67 !

68 ! Zero out remaining gradient objects again

69 !

70 gradobj = 0.0d0
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71 g_w= 0.0d0
72 g_a= 0.0d0
73 !
74 ! setg_p_for thiscall
75
76 g_p_= 1 ! Onlyusingthefirst layer!!!
77 !
78 ! "Leadingdimension"parametersmaybeenteredintothecalling
79 ! sequenceasliterals. Noticethat thesemustmatchthevalues
80 ! usedin thedimensioningstatementsandnot theg_p_value:
81 !
82 call g_test(g_p_,x, g_x,4, y, gradobj,9, w, g_w,4)
83 !
84 ! Now,y=x'*a*x(again!)andthefirst layerof gradobjcontains
85 ! the linearcombinationof thepartislderivativesof y with
86 ! respectto theelementsof x withthecoefficientsenteredinto
87 ! thefirst layerof g_x.
88 ! Codeto usethe1inearcombinationof partialderivativescould
89 ! beput here.
90
91 endprogramdriver

In program driver, lines 10-17 show data object specifications which

have been borrowed (edited to remove unneeded variables and translated to

Fortran 90) from g_test. The array declared in line 25 will be used as a

gradient object for the dependent variable and does not follow the ADIFOR

naming convention; that is no problem, the names of the variables in the

driver program can be anything. Only the names of common blocks and

subroutines called (i.e., global symbols) and the dimension and type speci-

fications of objects in common blocks need to match what is given in the

ADIFOR generated code.

Lines 34-41 initialize the seed array g_x. For example, line 37 says that

the second layer of the seed array will be the 2 by 2 matrix

0 010)"

This is what is needed to select the partial derivative with respect to x (2, i)

from the gradient of y.

In lines 45-47, the other gradient objects are set to zero. Line 47 is

necessary since a is constant, but is an input value being treated as active.

The other two are just for safety. In lines 51-54, the integer arguments to
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g_test are being set to their proper values for this call, which occurs at line
55.

In the remainder of the driver, another call to g_test is prepared and

made, this time to calculate a single linear combination of the partial deriva-

tives of y with a set of coefficients. The coefficients are set in the first layer

of g_x in lines 63-66. The array gradobj is used for the dependent variable

gradient object. Even though it has 9 layers, only one is used. However,

g_test is told about the 9 layers in the call at line 82.
With the ADIFOR environment still in place (so that the operating sys-

tem knows about the value of environment variables like SAD_LIB), the driver
program and necessary subroutines can be compiled, linked, and run by the
commands:

% f90 -c driver.f90

% f90 -c g_test.f

% f90 -c g_dgemm.f
% f90 -c lsame.f

% f90 -c xerbla.f

% f90 -o runfile driver, o g_test.o g_dgemm.o lsame.o xerbla.o\

% $AD_LIB/lib/ReqADlnt rinsics-$AD_OS.ok

% -L SAD_LIB/lib -1ADI ntrinsics-$AD_OS

% runfile

The f90 command indicates invocation of a Fortran 90 compiler. It is not

necessary to compile and load test.f and dgemm.f since their functions

are duplicated in g_test, f and g_dgemm, f. However, since dgemm, f called

lsame and xerbla and these subroutines were not differentiated, g_dgemm, f

also calls them and their files must be included in the compile and link.

7 Generating code to calculate Hessians

ADIFOR 2.0D can be used to generate code for the calculation of gradi-

ents. This is useful. However, there are some applications such as the one

which motivated this study (section 1) which need Hessians and other sec-

ond derivative information. The developers of ADIFOR have, in version 3.0,

a processor which can generate Hessian information. However, at the level

of support and documentation which exists as of the time of this writing,

ADIFOR 3.0 is not a viable option for the general user. So, an alternative is

explored.

ADIFOR 2.0D accepts as input Fortran 77 code which calculates a func-

tion and produces as output Fortran 77 code which calculates the linear
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combinationsof the partial derivativesof that function. Supposethat one
needsFortran77codewhichcalculatesthe Hessian(or othersecondderiva-
tive relatedinformation)of that function. The obviousthoughtis to apply
ADIFOR2.0Dagain,this timeto the Fortrancodewhichit producedon the
first application.This is whatwasdonein thestudymentionedin section1.

The secondapplicationof ADIFOR presentssomeproblemswhich are
usuallynot presentin the first application. As commentedin section2,
ADIFOR generatescodewhichcalculateslinearcombinationsof the partial
derivativesof the dependentvariableswith respectto the independentvari-
ables. It followsthat if oneappliesADIFOR to ADIFOR generatedcode
naminga derivativeobject of the first dependentvariableasthe newde-
pendentvariable,theresultingcodewill calculatelinearcombinationsof the
partial derivativeswith respectto the secondsetof independentvariablesof
linearcombinationsof thepartial derivativesof thedependentvariableswith
respectto the first set of independentvariables.The complexityof this de-
scriptionof secondderivativecodecapabilityis reflectedin the complexityof
thecode,itself. While commentswill bemadein section7.3illustrating the
full generalityofthesecondderivativecodein asimplecase(scalardependent
variable,independentvariablesin asingleFortranvectorvariable),themain
burdenof the presentcommentswill bedirectedat explaininghowto setthe
seedmatricesto generatejust the individual secondpartial derivativesand
whereto harvestthem. This is the informationwhichwasfoundsufficientto
generateandusecodeto calculatethe secondderivativeinformationneeded
in the study mentionedin section1.

Attention will begivento the followingitems:

. To avoid duplicating names of variables, etc., the naming character pair

used in the second application of ADIFOR must be changed from that

used in the first. For example, if default naming characters are used

in the first application, then one might use the ADIFOR preprocessing

option AD_PREFIX=h in the second.

. The user must be aware of, and make accommodations for, one idiosyn-

crasy of the default way in which ADIFOR 2.0D deals with exceptions,

i.e., points of non-differentiability.

3. The user must choose independent and dependent variables for both
ADIFOR runs.
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4. Derivativeobjects,includingseedmatrices,aregeneratedbybothADI-
FOR runs, and the usermust dealwith questionsof initialization of
andinterpretationof final answersin thesederivativeobjects.

Nothingmoreneedbesaidaboutduplicatenameavoidance.Theremain-
ing pointsareaddressedin sections7.1 7.3.

7.1 Consequences of ADIFOR exception handling

This Technical Memorandum has heretofore ignored the topic of ADIFOR

exception handling (e.g., how ADIFOR generated code warns the user if

asked to provide the derivative of ABS(X) at X = 0.0D+00). For that, the

user is referred to [2], especially Appendix B. However, there is one conse-

quence of ADIFOR treatment of exceptions which has an impact on iterated

applications of ADIFOR.

Under default preprocessing options, ADIFOR generates a variable whose

name, independent of the setting of preprocessor option AD_PREFIX, is

g_ehfid. By default, ADIFOR generated code includes lines of the form:

integer g_ehfid

data g_ehfid /0/

call ehsfid(g_ehfid, 'g_func','h_g_func.f')

The call to ehsfid provides information to the ADIFOR exception

handling subroutines. The character strings 'g_func' and 'h_g_func.f'

which appear in the call to ehsfid arise because this code fragment came

from a file named h_g_func, f which was generated by applying ADIFOR

2.0D to file g_func, f with preprocessing options including tD_T0P=g_func

and AD_PREFIX=h. The problem arises since, despite the specification of

AD_PREFIX=h, the variable name g_ehfid is being used. If the code for

g_func was generated by ADIFOR from the code for func using default

settings of ADIFOR preprocessing options, a similar code fragment, specif-

ically including the declaration and initialization of the variable g_ehfid,

would have been generated in g_func. When ADIFOR 2.0D generates file

h_g_func, f from g_func, f, it both copies the existing declaration and ini-

tialization of g_ehfid and generates a new one. Fortran compilers treat this

duplicate declaration (and initialization) of the same variable as an error.
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Onesolutionfor this problemis to suppressthe generationof this excep-
tion handlinginformationin oneor both of the ADIFOR runs.This canbe
accomplishedby includingthe ADIFOR preprocessoroption

AD_EXCEPTION_FLAVOR=performance,

see ([2, p. 40]), in one or both of the ADIFOR runs. The choice used in the

study mentioned in section 1 was to include this option in the first derivative

generation run. This has the advantage that the code generated in this

fashion compiles without error. A disadvantage is that some attempt to

evaluate the derivative of a function at a point of non-differentiability may

go unreported to the user.

7.2 Choice of dependent and independent variables

In naming dependent variables for iterated applications of ADIFOR, the user

should remember that, in addition to ADIFOR generated code to calculate

derivative-related information for the dependent variable(s), the ADIFOR

generated subprograms contain a complete copy of all the calculations of

the original code. Thus, if a subroutine named func is processed by ADI-

FOR with variable f named as a dependent variable and default preprocessor

options, then a subroutine named g_func is generated whose calculations in-

elude both all of the calculations done for the dependent variable f in the

original subroutine func and the additional calculations necessary to gener-

ate the proper values for inclusion in the derivative object g_f. If g_func

is then itself subjected to ADIFOR processing with AD_PREFIX=h in order

to generate code which will calculate second derivative information for the

dependent variable f, g_f must be specified as a dependent variable in this

second ADIFOR run. This second derivative information will then be placed

in the gradient object h_g_f. It is probably unnecessary to specify f as a

dependent variable in this second ADIFOR run unless the user is playing

some very esoteric games with the dependent variable lists or the seed ma-

trices. The subroutine h_g_func will contain all of the calculations from

g_func related to g_f. If values are chosen for the seed matrices as will be

explained in section 7.3.2 in order to calculate Hessian information for f in

the gradient object h_g_f, these same values will result in the calculation of

gradient values for f in the gradient object g_f. If f had also been specified

as a dependent variable in the second ADIFOR run, the gradient object h_f

would have been generated, and, if the seed matrices g_x and h_x are set
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to calculatethe Hessianof f with respectx, executingh_g_f wouldhave
madetwo independentcalculationsof the gradientof f, placingcopiesof the
gradientin both g_f andh_f.

That said,onesituationcomesto mind whereonemight wishto declare
f to be a dependentvariablein both the first and secondapplicationsof
ADIFOR. If the desiredsecondderivativeinformationincludesonly mixed
secondpartial derivativesfrom two disjoint setsof independentvariables,
andif the gradientswith respectto all variablesin bothsetsis desired,then
one wouldwant to includef asa dependentvariablein both applications
of ADIFOR. Then the gradient object g_f would contain first derivatives

of f with respect to the first set of independent variables and the gradient

object h_f would contain first derivatives of f with respect to the second set

of independent variables.

7.3 Information content of derivative objects

For purposes of illustration in this section, it is supposed that a subroutine

named func is the top-level subroutine in a Fortran 77 software package which

computes the value returned in a scalar or array variable f (and possibly other

variables) as a function of the values passed into func in a scalar or array

variable x (and possibly other variables). It is desired to compute Hessian

information consisting (at least in part) of the (double and mixed) second

partial derivatives of (the components of) f with respect to (the components

of) x. This is to be done with two applications of ADIFOR.

The first application of ADIFOR will be to func. f, the file containing the

subroutine func, (and possibly to other files) using default naming characters

so that the file g func.f (and possibly others) is generated containing a

subroutine named g_func. This application of ADIFOR will name f as a

dependent variable and x as an independent variable. This application will

include the ADIFOR preprocessing option which prevents generation of the

variable name g_ehfid:

AD_EXCEPTION_FLAVOR=perf ormance

The input needed by subroutine g_func will include the input variable x

to the parent subroutine func and the seed matrix g_x, and the output

produced by subroutine g_func will include the the same output f produced

by the parent subroutine func and the derivative object g_f. With proper

initialization of g x (and the other seed matrices, if any), execution of g func
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will setinformationin g_f whichincludesthe valueof the gradientof f with
respectto x at the giveninput values.

The secondapplicationof ADIFORwill be to g_func, f, namingg_func
asthe top level routine. This applicationwill includethe preprocessingop-
tion AD_PREFIX=handnameg_f asadependentvariableand,again,x asan
independentvariable.A file namedh_g_func,f will begeneratedwhichwill
includethe codefor ADIFOR generatedsubroutineh_g_func. The inputs
to subroutineh_g_funcwill includeall of the inputs to its parentsubrou-
tine g_func includingboth the independentvariablex and the previously
generatedseedmatrix g_x andalsoa newlygeneratedseedmatrix h_x. The
output of h_g_funcwill includeall of the output of its parentsubroutine
g_func including the originaldependentvariablef, and the first derivative
informationwhich is determinedby the contentsof the seedmatrix g_x
(and,perhaps,otherg_ seedmatrices)and placedin the derivativeobject
g_f. Theoutput of h_g_funcwill alsoincludesecondderivativeinformation
in the derivativeobjecth_g_f. This will dependon the contentsof the seed
matricesg_xandh_x (andpossiblyotherg_ andh_seedmatrices).

In theterminologyof section5.2,a derivativeobjectis madeup of layers
whicharethe sameshapeasthe parentobject. Eachlayerof the seedma-
trices(derivativeobjectsfor the independentvariables)providescoefficients
usedin forminglinearcombinationsof the gradientsof eachdependentvari-
able.Theseareplacedin the correspondinglayerof the derivativeobjectof
thedependentvariable.Thefirst subscriptpositionof the derivativeobjects
is usedto indexthroughthe layers.This relatesderivativeobjectsto their
parents.The next topic to beaddressedis the relationshipbetweensecond
derivativeobjects(like h_g_f) and their grandparents(for this example,f).

For purposesof illustration, supposethat f hasrank 1, soan arrayel-
ementof f can be referencesusing a singlesubscript,as in f (k). Then
its (first) derivativeobjectg_f is of rank 2, and g_f (j ,k) references linear

combinations of the partial derivatives of f (k) with respect to the indepen-

dent variables declared in the first application of ADIFOR using coefficients

stored in layer j of the g_ seed matrices. The second application of ADI-

FOR adds another dimension of layers to the derivative object g_f when it

forms the (second) derivative object h_g_f. A typical element here might be

referenced as h_g_f (i, j, k). It is a linear combination of the partial deriva-

tives of g_f(j ,k) with respect to the independent variables named in the

second application of ADIFOR with coefficients stored in layer i of the h_

seed matrices. Relating this back to the original function, this means that
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h_g_f(i,j ,k) contains a sum of terms of the form

where x is a variable from the second set of independent variables, y is a

variable from the first set of independent variables, aix is from the x position

of layer i of the h_ seed matrix containing x, and bjy is from the y position

of layer j of the g_ seed matrix containing y. This will be illustrated in more

detail in two specific examples.

7.3.1 Scalar f, vector x

Suppose that f is a scalar and x is a vector. Suppose also that the first

application of ADIFOR names only f as dependent variable and only x as

independent variable, and that the second application of ADIFOR names

only g_f as dependent variable and only x as independent variable. Suppose

that AD_PNAX is specified to be 1 in both runs. Then h_g_f is (effectively) a

scalar, and g x and h x are (effectively) vectors of the same order as x. If

g_x and h_x are initialized with coefficients from the column vectors sg and

Sh, respectively, then execution of the second derivative code will result in
calculation of the number

[±1
(s.)' Lax j (s=).

7.3.2 Second derivatives of a function of several Fortran vector

variables

This section will illustrate the generation of second derivative information
for a function of several variables which are all contained in Fortran scalar

or vector data objects. If the technique of this section is applied to generat-

ing second derivative code by two applications of ADIFOR using the same

AD_IVARS setting for both, then a Hessian would be calculated. However,

it is not necessary to restrict AD_IVARS to be the same in both ADIFOR

applications, and a more general case will be illustrated.
This illustration will continue the illustration presented in section 5.4. In

addition to the independent variables w, x, y, and z introduced there, suppose
that the dependent variable has 24 scalar components contained in a Fortran
array variable f dimensioned (6,4). For simplicity, it will be assumed that
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thecomputationof f is complete in the single subroutine func, and that the
interface to subroutine func is:

subroutine func(w,x,y,z, f)

All four variables, w, x, y, and z, with their total of 7 scalar components

will be declared as independent variables in the first ADIFOR differentia-

tion, while only the three variables, x, y, and z, with their total of 5 scalar

components will be declared as independent variables in the second ADIFOR
differentiation.

For the first differentiation, a composition file, first, crop, is used which
contains a single line:

func.f

The script of ADIFOR preprocessing options is contained in file first, adf
which includes the lines:

AD_PROG=first.cmp

AD_TOP=func

AD_IVARS=w,x,y,z

AD_DVARS=f

AD_PMAX=7

AD_EXCEPTION_FLAVOR=perf ormance

This will generate the file g_func, f containing the subroutine g_func.
The SUBROUTINE statement for subroutine g_func is:

subroutine g_func{g_p_, w, g_w, ldg_w, x, g_x, ldg_x, y, g_y,

*ldg_y, z, g_z, ldg_z, f, g_f, ldg_f)

For the second differentiation, a composition file, second, crop, is used
which contains a single line:

g_func.f

The script of ADIFOR preprocessing options is contained in file second, adf
which includes the lines:

AD_PROG=second.cmp

AD_TOP=g_func

AD_IVARS=x,y,z

AD_DVARS=f

AD_PMAX=5

AD_PREFIX=h
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Thiswill generatethefileh_g_func,f containingthesubroutineh_g_func.
If ADIFOR doesnot find it necessaryto declaref or any of the seedma-
trices in subroutineg_func asbeingactive, the SUBROUTINEstatementfor
subroutineh_g_funcis:

subroutineh_g_func{h_p_,g_p_,w, g_w,ldg_w,x, h_x, ldh_x,g_x,
*ldg_x,y, h_y, ldh_y,g_y, ldg_y,z, h_z, ldh_z,g_z,ldg_z,f,
*g_f, h g_f, ldh_g_f,l dg_f)

Theuserisnowfacedwith the taskof writing codewhichwill callsubrou-
tine h_g_funcwith thecorrectinformationto causecalculationofthedesired
value.First, clarificationisgivenof what thedesiredoutput of h_g_funcis.

The mathematicalvectors is usedto representthe 7 scalarvaluesw(i),
w(2), x, y, z(l), z(2), and z(3) in the 4 Fortranvariablesw,x, y, and z;
andt is usedto representthe 5 scalarvaluesin the 3 Fortran variablesx,
y, and z. The 7 indexpositionsof s correspondto the 7 layersof the g_
derivativeobjectsandthe 5indexpositionsof t correspondto the 5 layersof
the h_derivativeobjects.If fij representsthe scalarfunctionwhosevalueis
returnedbysubroutinefunc in the (i,j) componentof Fortranarray f, then
it is desiredthat a call to h_g_funcreturn the gradient

in the arraysectiong_f ( :, i, j ) andthe transposedsecondderivativematrix

in the arraysectionh_g_f(:, :, i, j). (Thecolon, :, usedhereasan array
subscript,is aspecialcaseof thesubscripttriplet notationof Fortran90asin
[5,p. 170].It indicatesthat the indicatedsubarrayusesthe entiredeclared
rangeof the dimensionin whichthe colonoccurs. In this, it is identicalto
the useof the colonasanarraysubscriptin Matlab©.)

Thiscanbeaccomplishedbypassingsectionsofanorder7 identity matrix
for the first derivative(g_)seedmatricesandsectionsof anorder5 identity
matrix for secondderivative(h_)seedmatricesasin section5.4.TheINTEGER
variablesh_p_ and g_p_arepassedas 5 and 7, respectively.The output
objectsaredeclared:

doubleprecisionf(6,4),g_f(7,6,4),h_g_f(5,7,6,4)
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All the ldg_ parametersareenteredas7%and all the ldh_ parameters
areenteredas 5%. The Fortran variablesw, x, y, and z are initialized to
the valuesat which the function and its first and secondderivativesareto
be calculated.Thensubroutine h_g_funccanbe called,and the desired
resultsarereturnedin f, g_f, andh_g_f.

The useris againcautionedthat ADIFORmaycreatederivativeobjects
for dataobjectswhichtheuserbelievesto beinactive.Theusermustbealert
for anycaseswherethis occursin the callingsequenceof the (first or second)
derivativeof atop levelroutineor in acommonblock.Theusermustdeclare
theseextraderivativeobjects(with their commonblocks,whereappropriate)
in the driver codeandshouldinitialize themto zeros.

8 Summary

ADIFOR 2.0D is a Fortran code processor. It converts Fortran 77 code which

calculates a (possibly vector-valued) function f of a vector argument x into

Fortran code which calculates information related to the sensitivity of f to

variation in x (including, but not limited to, Of/Ox). The principal reference

for ADIPOR 2.0D is [2].

This note gives one user's experience with using the resulting ADIFOR

generated code. Emphasis is given to items the user needs to know to write

a driver code which will call the ADIFOR generated derivative software.

Explanations are given on how to deal with ADIFOR generated common

blocks. The dummy parameter list of ADIFOR generated subroutines is

explained.

The ADIFOR generated code contains data structures called derivative

objects, some of which are seed matrices which the user must initialize and

some of which contain gradients and other sensitivity information which the

ADIFOR generated code calculates for the user. This note has explained

how to initialize seed matrices and, based on what is in the seed matrices,

how to interpret the answers returned by the ADIFOR generated code.

By taking extra precautions, it is possible to apply ADIFOR to code

which, itself, has been generated by ADIFOR. The result is code which can

calculate second derivative information for the original function f. This

process has been explained and some illustrations given.
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Appendix: FTNCHEK as a call tree generator

FTNCHEK is a Fortran 77 program checker. It is designed to detect certain

errors in a Fortran program that a compiler usually does not. For purposes

of this note, the one of its many capabilities which is emphasized is its ability

to scan a collection of files containing Fortran 77 source code and produce a

call tree. From this, it can be determined what subprograms are required by

a specific subroutine.

FTNCHEK was designed by, and is maintained by, Dr. Robert Moniot,

professor at Fordham University. It is freely available from Netlib by visiting

the URL ftp://netlib.org/fortran and downloading file ftnchek.tgz.

More information may be found at Dr. Moniot's web site:

http ://www. dsm. 2ordham. edu/-ftnchek

By default, ftnchek produces voluminous output which, while of value in

detecting programming errors in the code, does not provide the calling tree

information in a compact format. To get the calling tree for all Fortran 77

subprograms contained in *. f files in the current working directory, execute
the command:

ftnchek -nocheck -calltree=tree,no-prune *.f > call_tree

The desired information can then be found in the file call_tree.

NASA Langley Research Center

Hampton, VA 23681-2199

March 21, 2002
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